An Augmented Incomplete Factorization Approach for Computing the Schur Complement in Stochastic Optimization

نویسندگان

  • Cosmin G. Petra
  • Olaf Schenk
  • Miles Lubin
  • Klaus Gärtner
چکیده

We present a scalable approach and implementation for solving stochastic optimization problems on high-performance computers. In this work we revisit the sparse linear algebra computations of the parallel solver PIPS with the goal of improving the shared-memory performance and decreasing the time to solution. These computations consist of solving sparse linear systems with multiple sparse right-hand sides and are needed in our Schur-complement decomposition approach to compute the contribution of each scenario to the Schur matrix. Our novel approach uses an incomplete augmented factorization implemented within the PARDISO linear solver and an outer BiCGStab iteration to efficiently absorb pivot perturbations occurring during factorization. This approach is capable of both efficiently using the cores inside a computational node and exploiting sparsity of the right-hand sides. We report on the performance of the approach on highperformance computers when solving stochastic unit commitment problems of unprecedented size (billions of variables and constraints) that arise in the optimization and control of electrical power grids. Our numerical experiments suggest that supercomputers can be efficiently used to solve power grid stochastic optimization problems with thousands of scenarios under the strict “real-time” requirements of power grid operators. To our knowledge, this has not been possible prior to the present work.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A preconditioning technique for Schur complement systems arising in stochastic optimization

Deterministic sample average approximations of stochastic programming problems with recourse are suitable for a scenario-based parallelization. In this paper the parallelization is obtained by using an interior-point method and a Schur complement mechanism for the interior-point linear systems. However, the direct linear solves involving the dense Schur complement matrix are expensive, and adve...

متن کامل

Sparse approximations of the Schur complement for parallel algebraic hybrid solvers in 3D

In this paper we study the computational performance of variants of an algebraic additive Schwarz preconditioner for the Schur complement for the solution of large sparse linear systems. In earlier works, the local Schur complements were computed exactly using a sparse direct solver. The robustness of the preconditioner comes at the price of this memory and time intensive computation that is th...

متن کامل

A Multilevel Dual Reordering Strategy for Robust Incomplete LU Factorization of Indefinite Matrices

A dual reordering strategy based on both threshold and graph reorderings is introduced to construct robust incomplete LU (ILU) factorization of indefinite matrices. The ILU matrix is constructed as a preconditioner for the original matrix to be used in a preconditioned iterative scheme. The matrix is first divided into two parts according to a threshold parameter to control diagonal dominance. ...

متن کامل

Sparse approximations of the Schur complement for parallel algebraic hybrid linear solvers in 3D

In this report we study the computational performance of variants of an algebraic additive Schwarz preconditioner for the Schur complement for the solution of large sparse linear systems. In earlier works, the local Schur complements were computed exactly using a sparse direct solver. The robustness of the preconditioner comes at the price of this memory and time intensive computation that is t...

متن کامل

Solving Second Order Cone Programming via a Reduced Augmented System Approach

The standard Schur complement equation based implementation of interior-point methods for second order cone programming may encounter stability problems in the computation of search directions, and as a consequence, accurate approximate optimal solutions are sometimes not attainable. Based on the eigenvalue decomposition of the (1, 1) block of the augmented equation, a reduced augmented equatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Scientific Computing

دوره 36  شماره 

صفحات  -

تاریخ انتشار 2014